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Abstract 

A priori structural information is incorporated into 
determinantal phasing techniques to improve phase- 
prediction accuracy in resolution ranges where atomic 
or isotropic group-scatterer assumptions are not valid. 
For this purpose a conditional joint probability 
distribution to triplet order for any set of normalized 
structure factors of space groups P1 and P i  is derived. 
The covariance of two normalized structure factors 
from the original set is calculated. A more general 
conditional joint probability distribution, involving 
covariance matrices of any order, is further derived. 
Numerical tests are performed employing ideal models 
consisting of several atomic groups of known stereo- 
chemistry but with random positions and orientations. 
The results indicate that the inclusion of stereo- 
chemical information improves the accuracy of phase 
prediction. The relative merit of this strategy in either 
one of or both normalization and covariance cal- 
culations for different resolutions is discussed. 

Introduction 

Determinantal direct methods have previously been 
used to improve high-resolution phases for macro- 
molecules (de Rango, Mauguen & Tsoucaris, 1975; 
Podjarny, Yonath & Traub, 1976; Podjarny & Yonath, 
1977). These techniques are useful when the available 
MIR data approach atomic resolution. In this instance 
several other approaches are also available, such as 
Sayre's formula and constrained-restrained refinement 
(Sayre, 1974; Sussman, Holbrook, Church & Kim, 
1977). These methods not only are effective but also, in 
the case of the constrained-restrained refinement, make 
optimum use of available stereochemical information, 
provided that a rough model is available. 

However, in a large number of cases, intensities 
and/or MIR phases do not reach atomic resolution. 
Therefore, it is convenient to introduce stereochemical 
information at an early stage of the phasing procedure, 
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before an approximate model is obtained. Such an 
approach has been introduced in the phasing of 
small-molecule structure factors by Main (1976), and 
expressed in stricter theoretical terms by Heinerman 
(1977). This theory introduces stereochemical infor- 
mation in the prediction of the phase of a triple product 
of normalized structure factors. The information is 
supplied in the form of the stereochemistry of rigid 
partial structures, which can have (1) fixed orientation 
and position, (2) fixed orientation and random position 
or (3) random orientation and position. For the case of 
fixed orientation and random position, tests performed 
by Main (1976) showed significant improvements in the 
accuracy of phase prediction. 

In the case of macromolecules, the tangent formula 
(Karle & Hauptman, 1956) does not have, in general, 
enough predictive power [for a discussion of this point 
see Mauguen (1979) and references therein]. It is 
therefore of interest to discover whether determinants, 
which involve higher-order n-tuplets, could be used, in 
conjunction with stereochemical information, at low 
and medium resolutions. In addition, one has com- 
monly to deal here with partial structures of random 
position and orientation but known stereochemistry. 
The partial structures or atomic groups are, for 
example, the monomers of the biopolymer (peptides in 
the case of proteins, nucleotides in the case of nucleic 
acids). 

For very-low-resolution data, these atomic groups 
can be considered as isotropic 'atoms' and deter- 
minants can be used with slight modifications. Such an 
approach was employed by Podjarny, Schevitz & 
Sigler (1981) for the case of tRNA. However, they 
have observed that the assumption of isotropic 'atoms' 
breaks down rapidly with increasing resolution. 

Therefore, we have extended the theory for triplet- 
phase prediction developed by Heinerman (1977) to 
covariance-matrix methods of phasing. Our purpose in 
this work is to add, to the experimental information 
contained in medium-resolution macromolecular data, 
stereochemical information generally known a priori. 
Our experience shows that, in resolution ranges where 
the assumption of 'isotropic group scatterers' (Pod- 
jarny, Schevitz & Sigler, 1981; Podjarny & Yonath, 
1977) is valid, it is possible to extend phases with only a 
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change in data normalization. However, work now in 
progress shows that in the resolution range where the 
'isotropic group scatterer' assumption is not valid, 
phase-prediction accuracy decreases even with pro- 
perly normalized data. Therefore, we tried to include 
the internal group stereochemistry in the whole theory. 
For this purpose, we choose an arbitrary set of rn 
reciprocal vectors (the generating ones) and take the 
corresponding E ' s  as the components of a random 
vector of dimension m (the vector of generating E's). 
We then calculate to the triplet order the conditional 
probability distribution of this generating set of 
structure factors when all the moduli and phases of the 
possible triplets involving two generating reflections are 
known. This distribution is used to calculate the 
covariances, also to triplet order, which are arranged in 
a covariance matrix. Using the central-limit theorem, a 
more general probability distribution is obtained, which 
includes all n-tuplets up to order m + 1, functionally 
related to the triplets in a way similar to that in which 
the moments of a unidimensional Gaussian distri- 
bution are related to the variance. 

This approach is central to the development of 
probability distributions using covariance matrices 
(Tsoucaris, 1970; Castellano, Podjarny & Navaza,  
1973). The central-limit theorem is particularly suitable 
in the case of macromolecules since the number of 
original random variables, i.e. the atomic positions, is 
quite large. 

The effect of the present theory is to modify the 
normalization and the covariances according to the 
stereochemistry. Results are described below for 
several test cases. 

Notation 

We follow broadly the notation of Heinerman (1977) 
and Heinerman, Krabbendam & Kroon (1979)• gk(h) 
= ~*=~ f~:(h) exp[2nfla . (~ -- rk)] is the group 
scattering factor, f~ (h)  is the atomic scattering factor, 
r k is the center of mass for the kth group, r~ is an 
atomic coordinate with respect to this center, and n k is 
the number of atoms in this group, hoi ' is a 'generating' 
reciprocal vector; (h00 = 0). 

F I ' = I - I  , Y ' = Y  , " -  Y " = Y  
i i , i2=0 il,i2=O i,,is=O il,i2,i3=0 
i I < i2 i! < i 2 i 4 < i 5 i~ < i 2 < i 3 

ijs¢:i~i2 
~i2i3 

¢=iz i3 

F M ( ~ )  is the figure of merit for the predicted value of 
phase ~0. 

m ~ m ~ m ~  
H t t t  - - -  ~ l v  

it--'-- 0 i I = 0  i2 = 1 
i2 = 1 i 2 = 1 i 3 = 1 
i: ~ i  2 i~ :~:i 2 i 2 < ia 

Derivation of the conditional probability for m nor- 
malized structure factors using stereochemical infor- 

mation for space groups PI and P i  

(1) Space group P 1 

The normalized structure factors are 

P 

Eh,,,2 = ~. gj(hi, i2) exp(2~zihi,6.rj)/(ir: ,2\I/2 ~ h h t 2  ~ / p . r . v .  
j = l  

where gs(hi, t,) is the atomic scattering factor for 1 < j < 
Pl and the group scattering factor for Pt + 1 < j < p 
and where (IFh,, 12) is the average of IFh 12 over the 

• • . . l 2 1,12 
following primitive random variables: (a) l ___j _< Pl, the 
atomic position vectors; (b)p~ + l <_ j S P2, the 
position vectors and orientational parameters of the 
randomly positioned and orientated groups, (c)P2 + I 
_ j _< p, the position vectors of the groups with known 
orientations. (Note that p is the total number of groups, 
considering a single independent atom as a group.) 

Alternatively, we can express Eh .... as follows: 

P 

fh,,, -" ~. uj(hi, i) exp[2~h66.r j + iflj(hi,6)] 
j=l 

where we have used the following definition: 

u j ( h i ,  i2) e x p [ i f l j ( h i l i 2 ) ]  = g j ( h i ,  i 2 ) / (  ~ 2 \ 1 / 2  I hi, t2 / p . r . v .  

and us(hi,6) is a real positive number. 
For a detailed calculation of ( I F  h,, ]2~p r v see Main 

(1976) and Heinerman (1977). Thes~resuits 'were used 
in our theoretical calculation of intensity curves. 

Operating in polar coordinates, we define: 

Eh, m = Ri, t2 exp ([tPi, i2) (il, i2 = 0 , . . . ,  m) 

and h i d  s ~-  h012 -- h01 ' with i t < i 2. We used the method of 
the characteristic function to obtain the joint pro- 
bability distribution as a function of the variables Ri, i :  
~i,i2 ( i l ,  i2  = 0 . . . .  , m) which is given by: 

P(Rol, . . . .  RI,6, .. ";  ( ~ 0 1 ' " "  " ,  ~i,  i2 . . . .  ) 

m 
1 FI' 

(2~z)m(m+ l) R66 

x f f . . .  f f exp - - i~ 'R66Pi ,6cos(~i ,6- -Oi ,6)  
0 0 0 0 

re(m+ 1)/2 
d o u b l e  i n t e g r a l s  

m 

x I-[' QO~o,, . . . ,  pi ,  i~ . . . .  ; 0 o , ,  . . . ,  oi, i 2 , . . . )  

x P66 dPi,6 d066 
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where 

Q(p0, ,  .. ", Pi, i2, "" "; 0Ol . . . .  , Oi, i2, "" ") 

= e x p  i ~ '  uy(hi, i2)Pi, t2 COS [27~hi, i2. rj 
y=l 

+ ~j(hi, i2)-- Oi, i2] } )  p.r.v. 

If we assume that the p different groups are indepen- 
dent, we can then express the characteristic function as 
a product of the characteristic functions of the different 
groups: 

Q(po l ,  . . . ,  pi, i2, . . . ;  0 0 1 , . . . ,  oi, t2, . . . )  

p 

= ]--[ qj(Pox . . . .  , Pi, i:  . . . ;  0Ol, . . . ,  Oi, i~ . . . .  ) 
j = l  

where 

qy(Pol . . . .  ' Pi, i2''" "; 001' " ' "  Oi, i2' "" ") 

( { m  = exp i ~ '  uj(hi, i2)Pi, i2cos[2nhi,  i2.rj 

+ flj(hiti2) -- Oi, t2] } ) p.r.v, j 

Developing the exponential in terms of Bessel func- 
tions, up to triplet order only, we obtain (see Appendix 
Ia): 

Q ( p o , , . . . ,  P i , , : "  "; 0o , , . . . ,  Oi, i2 . . . .  ) 
[ = m 

~-- exp --¼ ~ '  P~,i2 - I i ~ "  

× Qi, i~. i2t~. i, i~ Pi, i2 Pi2i~ Pi, i3 

x cos(Oi, i + Oi:t--  Oi, i--qi,l~,i2i~,t,i) ] 

l 

where Q~,;,.~j.~,;, exp (iq~,~,.~,~,.~,~,) is given in Appendix I(a). 
To integrate we used the procedure suggested by 

Heinerman, Krabbendam & Kroon (1979) and finally 
obtained: 

From this general distribution we obtained the 
conditional probability distribution up to triplet order: 

Peond.[R01 . . . .  , Rom; tp01 . . . .  , (POm/...Ri, i2 . . . ; . . . (Pi l i2 . . .  

(i, 4= 0, i 2 :/: 0 ;  i I < i2)] 

P ( R o , ,  " . . ,  Ri, i2 . . . .  ; (Po, . . . .  , (°i, i2 . . . .  ) 

Pmarg [ "  .Ri, i 2 . . . ; . . .  (Pi, t2"" "(i l  :/: 0 ,  i 2 :/: 0 ;  i 1 < i2)] 

= ~ R 01, exp -- R ~t, 
7~n i,= 1 

ta= 1 

+ ~ 2Qoh, i, i2,ol2 Rot, Ri, i2 Rob 
il, i2 = 1 
il < i2 

X COS (q)Ol, + (Pi, i2 -- (P012 - -  qol,.i, i2.0i2)]" 

This allowed us to calculate conditional covariances, 
also up to triplet order, the expression of which is as 
follows: 

(Eoi, E*i~)...Et, i:..(i, =/= 0, i, < i2) 

--- Qoi,,i, i2,0i2 exp(+iqol , , i ,  i2,0t2)E~i2. (1) 

Note that <Eo, ~ E~l,) = <Eol , E*I2>*; <Eofi E~i,) = 1. To 
obtain higher-order relationships dependent only upon 
the covariances we can follow the usual procedure of 
invoking the central-limit theorem, which leads us to 
the following conditional probability distribution: 

P(Eo , ,  " ' ,  E o m / e l  1 , ' " )  = - -  - -  
1 1 

re" D m 
exp (-Qm) 

where 

(Tsoucaris, 1970) 

Q m =  ~ E*i, D h h E o h '  
i,. i2:1 

D m is the determinant of the correlation matrix and Dl, i~ 
is an element of the inverse correlation matrix. From 
this formula we can calculate the statistical regression 
of any generating reflection, say Eom, upon all the 
others. We obtain for the predicted value of Eom: 

P(Ro,, .. ", R i l i 2 , ' "  ;(POD-" ", ~°i, i2 ,"  ") 

1 m [ ~ 
__ H t  l 

7rm(m+ 1)/2 Ri, i2 exp - -  Ri2i2 

+ 2 ~ "  Qi, i2.ida, t, i3 Ri,  iERi2i3 Ri, i3 

x c o s  ((Pill 2 -~ (]9i2i3 -- (Pi, i3 -- qi, i2.i2i3,i,/3)] • 
J 

m--1 
E{m = ~. Di, i2 Eol2 = I EPm I exp  (iq~Om) 

i 1, i2= 1 

with the corresponding figure of merit for the predicted 
value of the phase ~P0m: 

F M ( ~ m )  = I I ( B ) / I o ( B  ) 

where B = 21Eom I I Egm I ; I 1 and I o are modified Bessel 
functions. 
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(2) Space  group  P i 

The structure factor expression is: 

p/2 
Eh,,, = ~. 2us(ht, t )  cos[2~zhi, t~.r s + fls(h~,/2)] 

j=l 
where 

I gs(hi~/~)l 
uj(hi'iz)~" <lFhta~ /p.r .v.  2~1/2 " 

2'~1/2 Note that, if F(2hi,~) is not known, (IFh,~, I /p.r.~. 
ZP/2  I 2 s=, }gs(h~,~) (Main, 1976). Now the definition ofh~,~ 
for P1 is: 

hi, ie = ho~e- ho~, if it < i2 

hi, j2 : hOb + hol 2 if i, > i 2. 

The primitive random variables are : (a) 1 <_ j <_ p , / 2 ,  
the atomic position vectors; (b)pl/2 + 1 <_ j <_ p2/2,  
the position vectors and orientational parameters of the 
randomly positioned and orientated groups; (c)p2/2 + 
1 <_ j <_ p / 2 ,  the position vectors of the groups with 
known orientation. 

Using again the method of the characteristic func- 
tion, we obtained the joint probability distribution, 
which expression is as follows: 

Developing the exponential as a power series of Bessel 
functions we obtained (see Appendix Ib): 

I n  

Q(po, . . . . .  Pi, i,, . . . )  ~- exp - ½ Z ' "  P~2,i: 

-- 2i ~ iv [(Q0t~,t,13,013 Pot~ Pizi3 Pol~ cos qoh, i26,o13) 

+ (Q0t~.t,t~.ol~ Pot~ Pt~ Pot, cos qot,,i,t,,oi,)] }" 

After integrating, we finally obtained: 
1 [ In ,,, 

t • , • • I i  12 
P(Eo, ,  . .  E l ,  i? . ) :  (V/~--~)m2 exp ½~ E. 2 

i n  

+ 2 iv Y. (Qot~,i~t~,ol~ Eot~ E~i~ Eot~ cos qo~,/=i~,o~ 

+ Qol~, t~t~, ot~ Eot~ El~ l~ Eot~ cos qot~, i~i~, oi~)l. 

As for space group P1, we obtained from the joint 
probability distribution the conditional one up to triplet 
order, which is given by: 

Pcond.  [E01,  . . . ,  Eom/...E i,i2 ...(i I =/= O, i 2 4= 0; i, 4= i2)] 

' [ 
- -  (V/~) m exp --½ ~,=~, Eo~t, 

P ( E o , ,  . . . ,  El, t,, . . . )  

] ° ° ~ ( m  ) f . . . f  
h (271:) mz exp - i  7 '" E i~i2 P t,i, 

- - O O  - - O O  

m 2 integrals 

I n  

x Q(Po, . . . .  , Pl, i , , . . . )  l-I '" dPi, l~ 

where 

Q(po l , . . . ,  pi, i~ . . . .  ) 

= .<P/2j~I exp (i~'t'{2uj(hili2)Pili2 

p.r.v. 

Again, if the groups are independent: 

Q(po, . . . .  , P~,i2 . . . .  ) 
p/2 < ( In 

= 1-I exp i Z " '  {2us(hi, i, lP,,,, 
j = l  

x cos[27~hi, iz.rj + flj(hi, i2)]})) 

p/2 
= ]-I qS(Pol , ' " ,  Pi,i?" "')" 

Y=l 

p.r.v.j 

m 

+ 2 Y iv (Qoi2,i2i3,oi3 Eoi2 Ei, iEoi3 cos q%,i,i, oi, 

+ Qoi2,i3i2,oi3 E% Ei3i2 E% c o s  q%,ifi~,oi3)]" 

According to the same criteria used for P1, we 
calculated the conditional covariances and invoking the 
central-limit theorem obtained finally another con- 
ditional probability. They are respectively given by: 

(Eoh Eot,> ." Ei, iz'";"" El21,"" (il @ 0, i I < i2) 

= 2(Elai2 Qoh,i, iz, Oh COS qOh,i,6,0h 
+ Et, t, Q0t,, t~i,, 0t~ cos q0t,,m,,012). (2) 

1 1 
P(Eo,, ...,Eom/P,,, . . .)-  (V/~)in D'm/z exp(-½Qm) 

(Tsoucaris, 1970). 

From this formula the predicted value of a single phase 
is calculated as in the case of space group P1. 

Results  on test models  

To test the theory developed above, several structural 
models were simulated. As the main interest of this 
work is future applications to biopolymers, the models 
consisted of several repetitions of the same group. The 
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resolution used was such that atoms were not fully 
resolved. This is meant to simulate cases where electron 
density maps would not be completely interpretable by 
standard procedures and some improvement of the 
image is necessary. 

Groups are widely spaced and randomly positioned. 
They do not represent a real case, since the data  are 
ideal. Instead, they provide a numerical test of the 
theory and assessment of the influence of stereo- 
chemical information on phase predict_ion. 

The symmetry used was P1 and P1. The resolutions 
used were 3 and 1.9 A. A typical interatomic distance 
was 1.5 A. The cell dimensions were 15 x 15 x 15/l,. 

0 l0 z0 30 4o 50 80 7o 

~ J 

6 

t* 

5 

i i i i i i J 4 
O I O 2 0  3 8  4 8  5 8  6 8  70  

1 0 8  x D~(  ~ -q ) 

(b) 

Fig. 1. (a) Intensity curve for hexagonal groups. The hexagon side 
length was 1.5 A. The full curve was calculated from the Debye 
formula for rotationally and translationally averaged groups (see 
Main, 1976). The points were obtained from the calculated 
structure factors. (b) Same as (a), for tetrahedral groups with a 
center atom. The tetrahedron side length was 2.13 A, and the 
closest interatomic distance was 1.3 A. 

The mean intergroup distance in the asymmetric unit 
was 8 A. The group geometries were hexagonal and 
tetrahedral (with a center atom). 

Ten groups were repeated per asymmetric unit by 
random translations and rotations. Structure factors 
were calculated and normalized, either with or without 
stereochemical information. 

To normalize according to group geometry, the 
intensity curve was calculated from interatomic dis- 
tances and compared with the observed values of the 
mean intensity. Such curves are shown in Fig. 1. Note 
that similar curves have been observed previously with 
experimental macromolecular data  (French & Wilson, 
1978; Podjarny et al., 1981). 

Ka r l e -Haup tman  and Goedkoop matrices were built 
using the largest structure factors as generating 
reflections. Out of several models tested, the case of a 5 
x 5 matrix with a tetrahedral motif was selected, for 
both P1 and P1. The resolutions used were 3 and 
1.9 A. For  the latter resolution, the generating reflec- 
tions were selected within the 3 A sphere to simulate a 
dependence on low-resolution, high-figure-of-merit 
phases. 

Single phases were predicted each time, following a 
previously reported technique (Podjarny et al., 1976), 
in three different ways:  (1) disregarding group geom- 
etry; (2) using group geometry for normalization 
only; (3) using group geometry for both normalization 
and covariance calculation purposes, according to 
formulae (1) and (2). Thus, it was possible to measure 
the relative influence of  stereochemical information in 
normalization and covariance calculations. This is 
significant because the introduction of group geom- 
etries in the calculation of covariances for the case of 

Table 1. Root  mean square error fo r  phase 
extension (o) 

C ase 

1 

2 
3 
1 

2 
3 
1 

2 
3 
1 

2 
3 

S.G. Res. N. Gr. RMS1 R M S 2  RMS3 RMS4 

P1 3 80 61 31 (129) 36 21 
P1 3 20 59 27 (106) 24 18 
P1 3 20 59 25 (97) 24 18 
P1 1.9 80 65 32 (330) 36 25 
P1 1.9 20 66 44 (505) 38 26 
Pl 1.9 20 65 28 (346) 36 25 
Pi 3 80 72 26 (97) 23 13 
Pi 3 20 68 0 (80) 23 4 
Pi 3 20 69 0 (76) 23 5 
Pi 1.9 80 86 24 (270) 40 15 
Pi 1.9 20 90 40 (387) 46 17 
Pi 1.9 20 87 19 (267) 36 13 

'Case' is as described in the text, 'S.G.' is space group, 'Res.' is 
resolution in A, 'N. Gr.' is the number of groups (atoms for case 1), 
RMS1 is the overall error (252 reflections for 3 A; 1054 reflections 
for 1.9A), RMS2 is the r.m.s, error for B > 1 (number of 
reflections), RMS3 is the r.m.s, error for the largest F's (30 F's 
in P1, 3 A; 60 F's in Pi, 3 A; 200 F's in 1.9 A, P1 and Pi), RMS4 
is the same as RMS3, but weighted by B. Note that RMS4 is 
related to the correlation coefficient that links the original density 
with the predicted one (see Appendix II). 
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random translation 
computations. Table 
predictions. 

and rotation requires lengthy 
1 lists the results of these 

Conclusions 

Although the results described above correspond to 
ideal cases, they illustrate how the introduction of 
stereochemical information decreases r.m.s, error for 
the same reflections, and that the number of groups 
needed is considerably less than the number of atoms. 
This had already been pointed out (Podjarny & 
Yonath, 1977) and in real cases permits the use of 
much smaller matrices. 

The error for B > 1 (RMS2) is essentially a measure 
of the self consistency of the theory, whereas the overall 
error (RMS 1) and the errors for the largest F's  (RMS3 
and RMS4) are a measure of its real usefulness. In 
general, it is observed that the introduction of stereo- 
chemical information is always useful if used for both 
normalization and covariance calculations. 

Using RMS3 as a measure of phase-prediction 
accuracy, we can separate the results shown in Table 1 
in two main groups: 

(1) Improvement of phase-prediction accuracy, when 
normalization is performed according to group geom- 
etry, but without further improvement of it when 
stereochemistry is included also in covariance cal- 
culations. This is the case for 3 A resolution, both in P 1 
and Pi .  For space group PI ,  the effect is more evident. 

(2) Improvement of phase-prediction accuracy when 
stereochemical information is used in both nor- 
malization and covariance calculations. However, a 
decrease of the accuracy is observed when group 
geometries are used in normalization only. This 
happens at 1.9 A resolution, both in P1 and Pi .  

It would seem that the effect of using group 
geometries only in normalization depends on the 
resolution of the data. It should be noted that other 
measures of error give much smaller differences than 
RMS3, but in the same sense. As the largest F 's  
influence the map strongly, RMS3 seems to be a 
reasonable choice, but only practical applications can 
gauge the real usefulness of the method. 

The improvements in phase extension that we 
obtained were smaller than those reported by Main 
(1976) using the tangent formula with groups of known 
orientation. This is probably due to the decrease in 
structural information by rotational averaging. 
However, in real macromolecular cases at medium 
resolution the orientation of known groups is not 
known, and techniques developed for atomic resolution 
do not work. Therefore, the theory hereby developed 
seems a viable alternative to improve phase-prediction 
accuracy. This might be of special significance in those 
medium-resolution cases where normalization only 
deteriorates phase prediction. Work is in progress with 

such cases, nucleic acids in particular, in order to 
assess the potential relevance of the phase improve- 
ments reported herein to the quality of the electron 
density image. 

APPENDIX I 

(a) Space group P1 
Ifpl  + 1 _ j  --<P2 then: 

q j ( P o l  . . . . .  Pi, i, . . . .  , 0Ol . . . .  , Olxi 2, . . . )  

= ( e x p {  i ~ '  uj(ht, i)Pt, i2c°s[2~zhi~i2 "rj 

+ ~j(htd2)--  Oili2] } ) rj, orient." 

Expanding the exponential in power series of Bessel 
functions according to formulae used by Heinerman 
(1977) and references therein, and considering terms 
up to triplet order, we finally obtained for Pl + 1 < j 
<P2 

qJ(P01,'" ", Pi, i2, "" "; 001, "" ", Oi, i2," "') 
m 

2 2 
~-- 1 --¼ Z '  (uj(hi ,  i2))orlent. Pi, i2 

m 

-- ~i ~" " (uj(hi ,  i )uj(hi2i)  uj(hi,  l)pi,  i 2 Pt2i3 Pi, i3 

× COS {~j(hi,12 ) + ~j(hfifi) -- flj(hi, i3 ) 

-- Otli2- 0t2i3 + Olti3})orlent.. 

From this expression the corresponding ones for 
1 < j  < Pl and P2 + 1 _<j < p can be derived noting 
that for both 1 _< j _< Pl and P2 + 1 _< j _< p there is 
no orientational average and that for 1 < j  < Pl flj(h) = 
0. We finally obtained: 

p 

]--[ qs ' (Po,,  " " ,  Pt, l~ . . . .  ; 0o i ,  . . . .  O~,t, . . . .  ) 
J=  I [m 

~_ exp -¼ Y '  p1212-t  i " Qt, t2,12i3,t,6 Pi, i2 Pi2i3 Pi, i3 

cos(Ol,  t2 + 0t2t3- Ol, i3-- qi, t2,t2t3.l,i,)], X 
J 

where 

Q~,t,,12t3,t, t3 exp (iq~,i2,12~3,ilt~) 
Pl 

= Z tj(ht, t)tj(hi2i)tj*(h,~t) 
j = l  

P2 

+ ~ (tj(hllt2)tj(hi2i3)t~(hlli3))orlent. 
J=Pl + 1 

p 
+ Z tj(ht, t~)tj(h~2t3lt~(hl,~ ~1 

J=P2+ 1 



A. D. P O D J A R N Y  A N D  C. F A E R M A N  407 

and 

tj(hl, ts) = uj(ht, is ) exp [iflj(ht, ts)]. 

Note that all the terms of the form: 

( tj(hl, i)tj(hl~i,)t~ (hlll 3 ))orient. 

are calculated using the B(z , t )  formula (Hauptman, 
1965), in a similar way to that described by Main 
(1976). 

(b) Space  group P i 

Considering terms only up to triplet order in a power 
series of Bessel functions and including only the 
'pr imary '  triplets, that is those formed by two 
generators, we finally obtained: 

p/2 

1--[ qj(Pol, "" ", Pi, is . . . .  ) 
j = l  

I m m 

~-- exp --½ Y" '  p/21 s -- 2i ~lv (Qois, isi3,ot3PoisPi~i~ Pol3 

× cos qo~s, ts~,,o~, + Qo~s, t3~s.ot, pots P~3/s po~3 cos qots,~,~s,0t,)]. 

It is very important to note that in P i :  

Pt/2 P2/2 p/2 

~ u](h) + ~ (u](h))or,ent" + ~ u](h)= ½. 
j= 1 j=pt/2+ 1 J=P2/2+ 1 

The expressions for Qols,is6,Ola exp(iqo~,tsl3,ol3) and 
Qot,, t, is, 0t, exp (iqols ' i~ i~. o 13) are given by: 

Q0ts, tsl,, 0t3 exp (iqots ' ts t~, oi,) 

Pl/2 

= ~ tj(hol2ltj(hls6lt~(hol3) 
j=l 

Ps/2 
y. 

j=pJ2  + 1 
(tJ(hol 2) tj(h'si3)t ~ (ho/3)~orlent. 

p/2 
y 

J=P2/2 + 1 
tj(hot2)tj(hl213)t'f (hot3) 

and 

and 

Q0/2, i3t 2, 0/3 exp (iqols ' i3 is, oi,) 
P1/2 

= ~ tj(hots)t~(hi3is)tl(hol3) 
j =  1 

P2/2 

+ ~ (tj(holslty(hl3i2ltj(hol, l)orlent. 
j=pl/2 + 1 

p/2 
+ ~ tj(hol2)t~ (hl3ts)tj(hol3) 

J=P2/2 + 1 

tj(ht, is) = uj(hili2) exp [iflj(hl, i)]. 

A P P E N D I X  II 

The correlation between the observed and predicted 
densities can be approximated (Podjarny et al., 1976) 
by the correlation between predicted and observed 
structure factors, C (E~, Eh). 

For small values of (tp~ - tph ) this correlation is 
related to RMS4 by 

C(E~,Eh)  = C(IEfal , [Ehl)(1 -- RMS4/2).  
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